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 The theory of graphical causal 
models 

 

A theory for measurement of average causal effect 

(ACE) 

 

Basic assumptions: 
 

- A causal model has to be a special kind of chain 
graph model referred to as a “directed acyclic 
graph” (DAG). 

 

- There must be a data generating DAG 
mechanism behind all legitimate data. 

 

- Measurement of ACE is unconfounded in 
randomized experiments 

 

Raw calculation of ACE in observational studies may, 

but does not have to be confounded. 
 

The theory provides 

• rules to identify situations where the raw ACE 
from observational studies is not confounded 

 
• procedure for estimation of adjusted ACE from 

longitudinal observational studies 
  
• (procedures for estimation of causal order) 

  
 2



 
Some references: 

 
 
Glymour, C., Scheines, P., Spirtes, P & Kelly, K. (1987).  
 Discovering Causal Structure. Orlando: Academic Press. 
 
Pearl. J. (1987). Probabilistic Inference in Intelligent Systems. 
 San Mateo: Morgan Kauffman. 
 
Spirtes, P., Glymour, C. & Scheines, R. (1993). Causation, Prediction and  

Search. New York: Springer. 
 
Pearl, J. (1993). Graphical models, causality and intervention. Statistical 
 Science, 8. 669-710. 
 
Eerola, M. (1993). On Predictive Causality in the statistical analysis of 
 a series of events. University of Oulu: dept. of Appl. Math & Stat. 
 
McKim, V.R. & Turner, P. (ed.s)(1998) Causality in Crisis. 
 
Richardson, T.S. (1998). Chain Graphs and Symmetric Associations. In  
 Jordan, M.: Learning in Graphical Models. pp. 231-260, Dordrecht: 
 Kluwer Academic Publishers. 
 
Glymour, C. & Cooper, G.F. (ed.s) (1999). Computation, Causation, & 

Discovery.  
 
Lauritzen, S. L.(1999). Causal Inference from Graphical Models. AUC: 
 Dept. of Math. Sciences 
 
Parner, J. (1999). Causal reasoning and time-dependent confounding.  
 KU: Dept. of Biostat. 
 
Pearl, J. (2000). Causality: Models, Reasoning, and Inference:  

Cambridge: Cambridge University Press. 
 
Lauritzen, S.L. & Richardson, T.S. (2000). Chain Graph Models and their 

Causal Implications. AUC: Dept. of Math. Sciences 
 
 
Glymour, C. (2001). The Mind’s Arrows. Bayes Nets and Graphical Causal  

Models in Psychology. London: The MIT Press.  
 

 

 3



”In the last decade, small groups of statisticians, 

computer scientists, and philosophers have developed a 

theory about how to represent causal relations ... . From 

those representations there follow accounts of how ... 

causal relations can be reliable learned, at least by 

computers.” (Glymour, 2001). 

 

”I have been doing applied statistics now for many 

years and have learned ... a couple of general 

principles from this experience ...: 
 

a) The law of two numbers. If you get two different 

numbers that are supposed to be the same, at 

least one of them is wrong. 

b) The law of conservation of rabbits. If you want 

to pull a rabbit out of the hat, you have to put a 

rabbit into the hat. 
 

The Scheines, Glymour and Spirtes research on 

causality defies the law of conversation of rabbits.” 

Freedman (1997) (i McKim & Turner (1997)) 
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A study of the quality of home care in Danish 
municipalities 
 

R = Economic ressources 
K = Intervention 
O = Organisation of the home care 
Q = Quality of hjemmehjælpens 

 

The causal hypothesis: Intervention has a (positive) 

effect on the organisation and quality of home care. 

 
A conventional recursive model (A DAG) 

P(Q O K R P(QO K R P(O K R P( K R P( R, , , ) | , , ) | , ) | ) )= ⋅ ⋅ ⋅
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Different models 
No direct effect of R on O 

 
O ⊥ R | K 

⇔ 
P(O|K,R) = P(O|K) 

⇒ 
P(Q O K R P(QO K R P(O K P( K R P( R, , , ) | , , ) | ) | ) )= ⋅ ⋅ ⋅  

 
 

No direct effect of K on Q 

 
O ⊥ R | K      &   Q ⊥ K | O,R 

⇒ 
 

P(Q O K R P(QO R P(O K P( K R P( R, , , ) | , ) | ) | ) )= ⋅ ⋅ ⋅  
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Observational study: 

 
 

Random intervention: 
 

Replace K with a new variable, K* such that K* do not 
depend on R 

 
K* has same outcomes as K 

 
Assume that individual causal effects do not depend on 

intervention 
 

P(O|R,K*=k) = P(O|R,K=k)  
 

P(Q|O,R,K*=k) = P(Q|O,R,K=k) 
 

A new graph & a new joint distribution: 
 

 
 

P Q O K R P(QO K R P(O K R P K P( R* *( , , , ) | , , ) | , ) ( )= ⋅ ⋅ )⋅
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Interpretation of results after 
intervention 

 

1. Evidence of causal effect. If cause and effect 

are correlated after intervention then the 

relation must be causal. 

 

2. P(Q | K*)  provides unconfounded estimates 

of average causal effects. 

  

Interpretation of results in observational 
studies 

 
1. No evidence of causality 

2. P(Q|K) will in most cases provide 

confounded estimates of ACE. 

3. The estimate of Ace is unconfounded under 

certain conditions. These conditions may be 

read off directly from the graph. 
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No intervening variables 

 
Observational study 

 
 

Intervention study 

 
 
 

The raw ACE is confounded if  P(Q|K)  ≠ P*(Q|K) 
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The Raw ACE 
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Calculation of ACE in a randomized experiment 
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- Two different weighted means unless R and K 
(observed) are independent 

 
- If there is no local (individual) effect of K (Q⊥K|R) 

then P*(Q|K) = P(Q)  
 
- P*(Q|K) depends on the distribution of the 

confounder 
 
- P*(Q|K)= P(Q|K) if K⊥R (no confounding) 
 
- P*(Q|K) may be estimated in an observational study, 

if confounders have been observed. 
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The back-door formula when there are bot 

spurious and indirect effects 
 

 

Observational study 

 
 

Intervention study 

 
 

∑ ⋅= R KRPRKQPKQP )|(),|()|(  
 

∑ ⋅= R RPRKQPKQP )(),|()|( **  
 

The intervening variable may be ignored
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Proof of the back-door formula: 
 
 

Observational study 
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Intervention study 
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The front-door formula 
 

 
 

No local effect of the confounder on the mediating 
variable (O)  

No direct local effect of intervention (K) on quality (Q) 
 
 

 
 
 

Under these conditions it follows that ACE does 

not depend on the distribution of the confounder, 

but only on P(Q|K,O), P(K) and P(O|K) all of 

which can be estimated without confounding in 

an observational study. 
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Proof of the front-door formula 
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We can show that  
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such that  
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because 
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A more complicated realistic example 
 
 

 
 

Which confounders do we need to take into 

consideration in connection with calculation of 

the causal effect, P*(Q|K), in an observational 

study? 
 

 

The answer to this question is given by 

the back-door trick. 
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The Back-door Trick 
 
 

Add a pseudo intervention variable, determining 

whether or not intervention should be applied, to 

the graph. The intervention variable must be 

independent of all variables appearing before the 

cause (K) in the causal order. 

 
 
Construct a so-called moral graph marrying all 

parents to the nodes of the graph. 

 

Find a (minimal) set of variables that together 

with the cause separates the intervention variable 

from the outcome in the graph. To calculate the 

causal effect, you only have to take the separators 

into account. 
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The intervention graph 

 
 

The moral graph 

 
Sufficient covariates:   E og R   eller  E og D 
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